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Abstract

The derivation and implementation of a multilevel analysis methodology for solid laminated composite beams is
presented. The methodology is based on a hierarchy of solution levels that enable the prediction of a wide spectrum of
physical phenomena including gross quantities such as the beam bending, extension, and twist components, and local
phenomena such as the in-plane warping, interlaminar stresses and delamination effects. Three main solution levels are
proposed. In the first level (level I), only the cross-sectional displacements, elastic twist and out-of-plane warping are
included. The second level (level II) includes the prediction of the in-plane warping. The third level (level III) accounts
for the interlaminar conditions and provides continuous stresses across interface lines in the case of bonded laminae, or
alternatively, satisfy the appropriate boundary conditions in regions where delamination occurs. By providing a
complete three-dimensional solution, the above separation of the problem into a set of solution levels provides an
efficient solution methodology and supplies a better insight into the phenomena associated with the deformation of
realistic orthotropic beams. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The increasing use of composite beams is a well-known trend in many engineering applications. Besides
their improved fatigue characteristics and high strength to weight ratio, composite materials offer many
additional design degrees of freedom and provide solutions for applications which were previously based on
a compromise between many different and contradicting demands. One of the profound features of com-
posite beams is the ability to introduce passive couplings into their structural mechanisms. It may be shown
that a proper layup design may induce couplings between the main elastic deformation components of
composite beams, namely, the transverse displacements, the axial displacement, and the twist (Chandra
et al., 1990; Rand, 1994). Elastic couplings may be exploited for “passive” augmentation of both the static
and the dynamic characteristics of composite beams. Improvements of the vibratory characteristics and
augmentation of the stability margins of helicopter blades is a typical example for potential applications
that may benefit from elastic couplings (Berdichevsky et al., 1992; Smith and Chopra, 1993; Yamane and
Friedmann, 1993; Tracy and Chopra, 1995; Bull, 1995; Rand and Barkai, 1996).
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The analysis of composite beams is by far more complicated than a similar analysis of isotropic beams.
The elastic couplings in orthotropic laminae emerge from the material level that exhibits coupling between
normal stress and shear strain and between shear stress and normal strain. In practice, the analysis of
composite beams has been originated from the classical isotropic plates solution methodologies by modifying
the material constitutive relations (Ochoa and Reddy, 1992; Kapania and Raciti, 1989). The resulting models
were originally suitable for thin plates and in many cases, the term “composite beam” still refers to a slender
thin beam (“‘plate-beam’ models) where mainly the beam bending in its “soft” direction is under discussion.

It may be shown that unlike analyses of isotropic beams, adequate prediction of the behavior and in
particular the elastic couplings in composite beams must be based on a detailed modeling of the distortion
of the cross-sections (i.e. the planes perpendicular to the beam axis before deformation) which is generally
termed shear deformation. The most important shear deformation component is the axial one and it will be
referred to as the out-of-plane warping in what follows. The other warping components that modify the
cross-sectional shape are referred to as the in-plane warping. Hence, due to the important role played by the
warping in the overall behavior of the beams, and in particular in the determination of the coupling
mechanisms, the earlier models were improved by higher-order shear deformation theories (Noor and
Burton, 1989; Kapania and Raciti, 1989; Nosier and Reddy, 1992; Chandrashekhara and Bangera, 1992;
Maiti and Sinha, 1994), whereas Wang and Choi (1982) represents studies that were aimed towards local
phenomena such as the boundary effects in laminated composites. Most of the above mentioned analyses
are focused on relatively simple “background loading™ of the composite laminae such as uniform axial
strain or prescribed load distribution over one of the cross-sectional edges.

Robbins and Reddy (1993) presents an exceptional and unique model that has been developed for thick
laminae based on a separate displacement field for each lamina. When applied to thick composites, the
analysis is capable of efficiently determining the interlaminar stresses and local effects. The formulation
provides displacement continuity across interlaminar interfaces but allows for discontinuous strain com-
ponents (i.e. discontinuous displacement derivatives). This model has a special relevancy to the solution
methodology presented in this paper as will be clarified later on.

As far as the gross behavior of a composite beam is concerned, an important category of solution
schemes which is based on an equivalent single layer analysis should be noted. In this category, the dis-
placement derivatives (i.e. the strains) are continuous across the entire thickness and therefore the trans-
verse stress components are discontinuous across lamina interfaces. Such an assumption may be valid for
predicting global characteristics of thick laminae but is not adequate for predicting interlaminar phe-
nomena. More details may be found in the works of Reddy (1989, 1990).

Since the warping is a local characteristic, detailed numerical models for realistic beams that are capable
of dealing with both large global deformation and all warping components, are typically based on enor-
mous number of degrees of freedom. The works of Giavotto et al. (1983) and Stemple and Lee (1989) are
representative numerical schemes that are based on relatively large number of degrees of freedom, which
include the necessary warping features, and yet contain some simplifying assumptions that ease their im-
plementation. In general, such models do not always supply enough insight into the structural mechanisms
and impose limitations on their usage in optimizations studies where many evaluations of the structural
analysis are required.

The present analysis is based on a multilevel solution procedure. The analysis employs a series of so-
lutions which are properly interconnected. Each solution is focused on a different level of the structural
response. The level hierarchy emerges from the fact that all “upwards” data (from a lower level to an upper
level) is of primary importance for the upper level solution, while all “downwards” data (from an upper
level to a lower level) is of a secondary (or lower) importance to the lower level. As a results, all downwards
information may be viewed as a “‘small correction” for the lower level which results in excellent conver-
gence properties of the entire procedure. The present analysis deals with three levels of solutions, but
additional levels are possible.
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The multilevel analysis presented in this paper is based on a graduate inclusion of physical effects according
to their overall importance and the changes they might induce on other physical phenomena. When dealing
with composite beams, the global bending, twist and extension are the primary group of parameters. Then,
the cross-sectional distortion (or the in-plane warping) constitute a set of additional deformation parameters
that should be determined, and subsequently, the interlaminar effects have to be considered. As mentioned
above, solutions of lower levels influence dramatically solutions of higher levels but not vice versa. Yet, all
levels are consistently and fully coupled, hence, once the overall multilevel process is converged — all
equations of equilibrium and boundary conditions are satisfied simultaneously and therefore constitute
a unique three-dimensional solution of this linear problem. Practically, this methodology enables focusing
and studying the associated phenomena at each level while ignoring irrelevant data from other levels. In
addition to its efficiency, this feature enables a clear insight into the phenomena associated with each solution
level.

To clarify the contribution of the proposed methodology, it should be mentioned that the literature
contains numerical methodologies that are titled as “multiscale”, “global-local”” and ‘“hierarchical” ap-
proaches (Fish and Markolefas, 1994; Belsky et al., 1995; Mitchell and Reddy, 1998). The above analyses
are based on numerical techniques, and usually on finite-element based solution schemes, that allow an-
alyses with various levels of meshing refinement at various locations over the structure. Subsequently, these
solutions are based on detailed meshing of areas of interest which enables to capture fine local effects that
are of smaller scale and could not be captured by the lower level (coarse) analysis although all physical
phenomena were modeled in both levels. It may be stated that the main focus of the above analyses is the
tailoring of the different numerical meshing used in different levels. The reader is also referred to the model
reported by Savoia et al. (1993a,b), wherein iterative variational approach has been applied to a laminated
beam model which was focused on the boundary layer analysis. In contrast with this class of methods, and
although one may adopt some numerical techniques in order to implement the present analysis as well, the
essence of the present approach is independent of any numerical aspect and level of discretization while as
stated earlier, the levels differ by their content of physical phenomena. In fact, the present approach is also
demonstrated by an analytic example in what follows. To make this point even clearer, it should be
mentioned that the multilevel strategy offered in this paper is not a ““grid correction” but rather hierarchy of
physical phenomena, while higher levels phenomena are determined in the background posed by the lower
level phenomena (and subsequently hardly influence this background state).

Additional clarification is required in order to distinguish the present analysis from the common analysis
of composite laminates. The term ““beam” used in this paper stands for the case of a slender structure which
is subjected to a generic distribution of loads and both global deformation (i.e. bending in two perpen-
dicular transverse directions, twist and extension) and local deformation (three warping components and a
detailed interlaminar analysis) are of interest. In contrast with the analysis of laminates, the beam cross-
sections may be very thick (such as a square cross-section) and both global (i.e. end effects) and local (i.e.
free-traction outer surface) boundary conditions are accounted for while their mutual influences are con-
sistently included in the analysis without any ‘“‘high-order shear deformation” assumptions. Thus, overall,
the proposed analysis offers a three-dimensional modeling of a realistic solid composite beam that accounts
for all levels of physical phenomena and may handle a generic distribution of loads.

2. Problem statement

An illustrative deformed composite beam of solid cross-section is shown in Fig. 1a. Before deformation,
the beam is straight and untwisted while the coordinates y and z define the cross-sectional planes and the
x axis passes through the cross-sectional centroid. The beam is constructed out of orthotropic laminae
which are parallel to the x—y plane as shown in Fig. 1b.
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Fig. 1. Description of the deformation components of an orthotropic laminated beam: (a) the four cross-sectional components u, v, w
and ¢ (functions of x only) and (b) the three warping components ¥*, ¥* and V" (three-dimensional functions).

It is convenient to describe the elastic deformation, #,  and w in the x, y and z directions, respectively, as

a:u_Wax_ZW7x+'Ilu7 (la)
B=p—z+ P, (1b)
w=w-+yp+ P, (Ic)

where u = u(x), v = v(x), w = w(x) are the displacement components in the x, y and z directions, respec-
tively, and ¢ = ¢(x) is the cross-sectional twist angle. ¥*(x,y,z) is the out-of-plane warping (i.e. in the x
direction), while ¥*(x,y,z) and ¥"(x,y,z) are the components of the in-plane warping in the y and z di-
rections, respectively. These three generic warping functions are superimposed upon the above mentioned
u, v, w and ¢ deformation components and are assumed to be of zero average value over the cross-sectional
area (i.e.[ [¥Y'd4d = [ [W¥'d4 = [ [ ¥"d4 = 0). Additional boundary conditions for these warping func-
tions will be dealt with in what follows. In this linear case, no distinction is made between the deformed and
the undeformed directions and the order of superposition of the deformation components is immaterial.

The above separation of the displacements into cross-sectional components (u#, v, w and ¢) and local
warping components (P, ¥ and V") is convenient due to the fact that the beam slenderness induces cross-
sectional displacements which are many orders of magnitudes higher than the warping components. Yet,
these warping deformation components play a key role in the involved physical phenomena.

Examination of the general constitutive relations for unbalanced orthotropic lamina which is parallel to
the x—y plane and the principal axis of which does not coincide with the x direction, shows that the stress—
strain relations may be written as
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{o} = [Cl{e}, 2)

where the stiffness matrix [C] is given by

Chi Cp Csz3 0 0 Cg

Ch Cpn Cy 0 0 Gy

Ci3 Gy C3 0 0 Gy (3)
0 0 0 Cu Cyi5 0 |°
0 0 0 C4i5 Cs5 O

Cis Cx Cx 0 0 Ceg

The elastic moduli C;; are functions of the material properties and the ply angle relative to the x axis (Ochoa
and Reddy, 1992), and {¢} and {e} are the stress and strain vectors, respectively, namely,

{J} = <0—an O—yya O—zza T}Z) sz; Txy>7 (4)
{8} = <8an8W78227V)z7yxzvyxy>' (5)

The beam undergoes a distribution of loads (forces and moments) in the x, y and z directions, in addition to
tip loads (i.e. tip forces and moments). Boundary conditions may be classified into two categories. The first
category includes the “beam” boundary conditions at both ends. In the present analysis, a “clamped-free”
beam will be under discussion (Fig. 1a), and therefore, geometrical boundary conditions are imposed at the
root while natural boundary conditions are imposed at the free tip. The second category includes the
traction-free surface of the beam which supplies boundary conditions to all warping components. Addi-
tional details will be discussed later on.

3. Definition of solution levels

At this stage, the problem will be divided into three solution levels while as stated before, each level is
responsible for the modeling of a different physical phenomenon. Fig. 2 describes the solution levels and their
mutual influences. The first (lowest) level is denoted “level I”” and includes the displacements u(x), v(x), w(x)
and ¢(x) and the out-of-plane warping ¥*(x, y, z). This analysis level ignores the in-plane warping and any of
the interlaminar effects. Subsequently, a (higher) “level II”” solution is aimed towards the determination the
in-plane warping components, namely, the components ¥*(x, y,z) and ¥"(x, y,z). Further on, the (highest)
“level IIT”* solution is carried out to refine the solution by adjusting the interlaminar stresses along the in-
terlaminar lines in the case of bonded laminae, or by refining the solution for local delamination effects.
Possible further solution refinement which is beyond the scope of the present effort and may be titled as
“level IV” solution, is the determination of edge delamination stress singularities (Chen and Huang, 1997)
which may provide a prediction of delamination propagation characteristics.

All of the above solutions levels are interconnected (Fig. 2). As already indicated, the level hierarchy
emerges from the fact that all “upwards™ data (from a lower level to an upper level) is of primary im-
portance for the upper level solution, while all “downwards” data (from an upper level to a lower level) is of
a secondary (or lower) importance for the lower level. In other words, all constrains and effects produced by
higher levels are feeded downwards and affect the lower level solutions and vice versa.

The following sections contain a detailed description of each level analysis, and its interaction with other
levels. In practice, the solution is initiated by level I (with no data from levels II and III), continues on to
level II (with no data from level III), and then continues on to level III. These three solution levels are
executed again while all downwards data is accounted for. The process is repeated until convergence is
achieved. Due to the hierarchy described above, and the fact that all upwards data is of primary importance
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Fig. 2. Solution levels hierarchy and their mutual influences.

while downwards data may be considered as small correction, the above simple iterative process exhibits
excellent convergence characteristics as will be demonstrated by the analytic example included in this paper.
Included in this example are the analytic expressions for the iteration matrix of the process and an analytic
evaluation of its spectral radius.

As already indicated, the above methodology enables the examination of the solution within each level
while dealing with the most important physical parameters of this level while all the other parameters of the
problem are treated as known background. This methodology may be executed in many and different
analytic and/or numerical techniques. To demonstrate the capability of the present analysis, this paper
includes (besides the analytic examples for simple cases), finite-difference based numerical schemes for
generic cases and geometries.

3.1. Level I: the cross-sectional displacements and the out-of-plane warping

Level I solution includes the cross-sectional displacements u = u(x), v = v(x), w = w(x) and ¢ = ¢(x)
and the out-of-plane warping ¥*(x,y,z). Thus, in this level, the in-plane warping components, ¥*(x, y,z)
and ¥"(x,y,z), and the interlaminar phenomena are ignored, and their effect is accounted for by the data
obtained from solutions levels II and III in terms of the stress distributions ¢!, I, ! and <! (Fig. 2).

xx2 “xz?

Thus, within this level, only the following three components of strain are accounted for

[©) e
o &
~— ~—

u
Exx = Upyy —YUsxx —ZWixx +¥ (

x )

Yz :y¢7x +IP75 ) (

ny = - Zd)vx +T7;I )

—~
(o)}
(¢}

~

where ¢, is the normal strain, y,_, y,, are the shear strains, and ( ),, denote differentiation with respect to o
(0 =x,y,2).
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Based on Eq. (2) and the above discussion, the stresses o,,, 7., and 1, in this level are written as

J.X.X II
Cih 0 Ci Exx Oy
_ R )
Txz - 0 CSS 0 sz + sz + sz . ( 7 )
I
Cs 0 Ces Vay Ty
Ty

For this level I solution, the global deformation of the beam is treated and therefore an integral form of the
equations of equilibrium should be constructed. Subsequently, equilibrium is achieved by four integral
equations and one differential equation. The integral equations are obtained by assuming that the beam is a
slender structure, and thus, the exact way of the introducing the external load to each cross-section is
immaterial (in other words, as far as the external loads are concerned, the beam is viewed as a ““thin line”).
Hence, all distributed loads along the beam are treated as body forces. This assumption leads to a uniform
traction-free boundary condition over the entire outer surface of the beam as will be shown later on. For
that purpose, the differential equations of equilibrium are first integrated in the following form:

//A (cfxx,x+@+m+8x)dz4 =0, (8a)
//A (m+rxy,x+@+3y)d/1 =0, (8b)
/ /A (@ + T+ Ty + Bz)dA =0, (8¢)

/ / (@ + Tooor + Tyoyp + Bz)ydA — / / (a}y,y + Typox + Tyzoz + By>sz =0, (8d)
A p— A . —

where 4 is the cross-sectional area and B,, B,, B. are the body forces in the x, y, z directions, respectively. It
may be shown that integrals over the cross-sectional area of the once underlined quantities vanish due to
their vanishing at the (traction-free) contour. In addition, the net contribution of the twice underlined terms
is zero. It should be noted that the above integrations are carried out only for the purposes of constructing
the equations for the solution in level 1. For other levels, the exact local differential equations are fulfilled.

The definition of the longitudinal derivatives of the cross-sectional resultant forces F, F;,, F. (in the x, y,
and z direction, respectively) and the moment resultant M, (in the x direction) are given by

F_;C?x = — / / Bdi = // O-XX7X dA7 (9a)
A A

FvyyxE - //B)dA = //Txym dA7 (9b)
A A

E?X = — / / BZdA = / / TxZJX dA7 (90)
A A

M, .= — // (yBZ — sz)dA = // (yrxz,x — foy7x)dA. (9d)
A A

Using the natural boundary values at the tip, namely ' = [ [, ¢\ .d4", Fy = [ fptdd, E = [ [ tt.d4t

xy
and M! = [ [ P (y‘cxz — zrxy)dAt, the above four integral equations become (see also Eq. (7))
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= / / (8aCr1 + 7, Ci6)d4 + / / (oh)d4, (10a)
// 2aCi6 + 74, Cos dA+// Txy (10b)
// (7,:Css) dA+// (T + 1) d4, (10c)

M. — / /A [7(7Css) — 2(6wCrs + 73 Ces)] 44 + / / Al o) — (el aa (10d)

The above equations are the integral equations for the cross-sectional unknowns u = u(x), v = v(x),

= w(x) and ¢ = ¢(x). In addition a differential equation of equilibrium is required for the out-of-plane
warping ¥"(x,y,z) which is a local function. For that purpose, the differential equilibrium equation in
x direction is explicitly used, namely,

O xxsx +Txy7y +sz7z +Bx =0. (11)

Note that the integral equation in the x direction (Eq. (10a)) yields the determination of u while the dif-
ferential equation supplies the out-of-plane warping ¥*(x, y,z) which is a local function of zero average
value. Hence, although both u and ¥* are deformation components in the x direction, they represent
different ingredients.

There are eight boundary conditions for the cross-sectional displacements u(x), v(x), w(x) and ¢(x) at the
blade root and tip, and a ““‘contour” boundary condition for the warping function, ¥, that should be
satisfied over the entire contour of each cross-section. The geometric boundary conditions at the root for a
clamped beam are

U=v=v,=w=w,,=¢=0. (12)

The natural boundary conditions at the blade tip are based on equating the transverse moments, M; and
M}, to those obtained by integration of the stresses over the tip cross-sectional area, 4"

_ / / [2(8C1z + Ciz) A" + / / [2(o")]dA, (13a)
- [ [ becnracar— [ [ [sat)ar. (13b)

The contour boundary condition is based on the requirement of traction-free outer surface which may be
expressed as (see also Fig. 1b)

Tes cos(;/,z) + 1, cos(ﬁ,y) =0 onC, (14)

where N is the local normal to the contour (Fig. 1b).
For level II solution, the following stress components are transferred (except for ¢! which is provided
below only for the sake of completeness), see also Eq. (2):

G)ch [ Cll 0 C16 | Exx
T)Icz = 0 C55 0 Yz (s (15)
T,IW 1 Cis 0 Cos| | vy
O-,{y [ C12 0 C26 ] Exx
o p=|Ci 0 Gy |q 7 ¢ (16)
T}z L 0 C45 0 ] 'ny
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For level III solution, the following strains at the interface lines (indicated as [](0)) are provided: &,,(0)
and 7,,(0), in addition to the value of ¢,. and the distribution of ¥".

The implementation of the above described solution level I for generic configurations will be described
later on.

3.2. Level II: the in-plane warping

Level II solution deals with the in-plane warping and the associated strain components. These quantities
are related by

&y =¥, (17a)
e =W, (17b)
L AR A (17¢)

The solution in this level ignores the interlaminar effects. However, once a solution in level IIT has been
carried out, the warping derivatives ¥,” and ¥.’ on both sides of the interface line (i.e. at the laminae
boundary) obtained by that solution are enforced in level II. The solution in level II is driven by the stresses
of Egs. (15) and (16) that were produced in level I solution (except for ¢! ). Thus, the stress components a,,,
0., and 7, in this case become (see also Eq. (2))

Oy Cpn Cyn 0 &y J;y
O, = C23 C33 0 &z + Giz . (18)
Ty 0 0 Cuf |7 T,

Equilibrium within this solution is maintained by the two differential equations in the y and z directions,
namely,
Oyyyy +T}zaz +TI- X +By = Oa (193.)

Xy

Ouzy + Ty + T +B: = 0. (19b)

Egs. (19a) and (19b) may be expressed using the above mentioned warping derivatives which yields a set of
equations for .2, ¥.”, ¥, and ¥,’. During the integrations of these equations, the values of ¥,” and ¥,
on both sides of the interface line serve as boundary values for the domain occupied by each lamina. These
boundary values are supplied by the solution in level III as will be clarified later on.

The associated boundary conditions for traction-free edges are (see also Fig. 1b):

0. cos(ﬁ,z) + 1 cos(ﬁ,y) =0, (20a)
Oy cos(ﬁ,y) + 1, cos(ﬁ,z) =0. (20Db)
For the solution in level I, the following stress components are determined (Eq. (2)):
an Cp Cs 0 &y
Tg = 0 0 C45 &z . (21)
T)l(;‘ C26 C36 0 V}z

The values of ¥’, and W" at the interface regions are transferred to level III for further use as will be
explained in what follows. In addition, the following strains at the interface lines are provided: ¢,,(0) and
yy

7y .

The implementation of the equations and boundary conditions in this level for generic cross-sectional
configurations will be described later on.
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3.3. Level III: the interlaminar interfaces

The solution in level IIT handles the interface regions. The discussion will be divided into two parts: the
case of bonded laminae and the case of delaminated region.

3.3.1. An interface between two bonded laminae

Fig. 3a presents an interface line between two bonded laminae. The following discussion will concentrate
on a typical vertical line which is perpendicular to the interface line. The same discussion holds for the
vertical edges lines as well. The purpose of the solution in level III is to determine the warping on the
interface line that will assure continuous stresses in the contact surface between laminae. The warping
shown in Fig. 3 represents any one of the components ¥*, ¥’ or ¥". In what follows, the superscripts ( )"
()" ()" of the warping will be omitted in cases where the discussions applies for all components.

Thus, from the level I or II solutions, the warping distributions which do not include the interlaminar
phenomena are known (denoted by a broken line in Fig. 3a). The role of the solution in level III is to
modify these warping distributions in the interlaminar area so that the relevant stresses over the interface
line will be continuous. For that purpose, the values of the warping at the interface point ¥*, V', ¥" are
defined as unknowns, and the following discussion will describe the determination of v P P for each
vertical lines. For the sake of clarity, the discussion will describe the construction of the three equations that
have to be solved at each interface point, provided that the warping ¥, %" and ¥" are known there, rather
then providing closed expressions for these warping values.

Thus, for each set of interlaminar warping values PP tis possible to determine the derivatives
¥..—o) and ¥, (40 (i.e. the derivatives of ¥,. on both sides of the interface line) and to express the strain
components that contain displacement derivatives with respect to z as (see Egs. (6b), (17b) and (17¢)):

Interface
Line

Interface
Line

Fig. 3. A scheme of a warping distribution across an interlaminar line. The description holds for all warping components: (a) the case
of bonded laminae and (b) the case of delaminated region.
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y,rz(i()) = y(0)¢7x +l‘l’a'zl(io) ) (223.)
ez(x0) = ¥lzo) s (22b)
Nzz0) = Py T¥orz0) 5 (22¢)

where “(0)” represents a value at the interface point. It should be noted that the value of ¥, 0 has been
transferred to this level by level 11 solution and is continuous across the interface line. Similarly, ¢,, (which
is constant over the entire cross-section) has been transferred from level I solution.

At this stage, the solution make use of &) and Vr(0) from level I and of ¢,,(o) from level 1I which are all
continuous across the interface line. By taking into account the different elastic moduli across the interface
line, the stresses on both sides become

022(+0) = C13(20)8xx(0) T C23(20)€p(0) T C33(20)822(20) + C36(:0) Vuy(0) 5 (23a)
Tyz(+0) = Ca4(20)7y2(20) T Ca5(20)Vaz(20)5 (23b)
Trz(£0) = C45(i0)yy_7<i()) + CSS(iO)sz(iO)' (23¢)

Subsequently, the three linear equations for ¥, ¥ and ¥" that ensure equal stresses on both sides of the
interface line are

022(+0) = Oz(-0), (24a)
Tyz(+0) = Tyz(~0), (24b)
Txz(+0) = Txz(—0)- (24¢)

This solution yields C° continuity of the displacement components through the interface line, while obvi-
ously, the strains on both sides of the interface point are different due to the discontinuous elastic moduli
(see further discussion of this point in Robbins and Reddy (1993)). This characteristic of the present
analysis will be demonstrated later on.

The outcome of this solution are the in-plane warping derivatives ¥,” and Y¥,”, on both sides of the
interface lines which are transferred to level II solution. In addition, the values of ¥, ¥.“ are used to

IEE) yzz
construct the stress 7}l = Css¥,* used in level I and the values of 71", = Css ¥, which are required there.

3.3.2. A delaminated region

Similar to the case of bonded laminae, the discussion in this section will concentrate on a typical vertical
line which is perpendicular to a delaminated interface line. The purpose of this version of level 111 solution
is to determine the warping on both sides of the interface line that will assure traction-free edges at de-
laminated regions.

It should be noted that the equations presented in this section are valid only for the cases where the
delaminated areas are known. As already mentioned, a more complete approach would be based on an
inclusion of an additional level of solution which will be responsible for predicting the delaminated area by
analyzing the stress singularities at the edge of the potential delaminated regions.

Fig. 3b illustrates the warping modification required at this stage. Again, from the level I and II solu-
tions, the warping distribution which does not include the interlaminar phenomena is known (denoted by a
broken line). The role of the solution in level III in this case is to determine the warping derivatives on both
sides of the interface line so that the delaminated areas will be free of traction. However, in this case, the
value of the warping at the lower edge of the upper lamina is not equal to the value of the same warping
component at the upper edge of the lower lamina. Thus, six unknowns appear at each vertical line: 2",
Dyt D" Ut U and VP (Fig. 3b). Subsequently, the following discussions describes the determination
of the above six warping unknowns for each vertical line that crosses an interlaminar surface.
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Egs. (22a)—(22c) are still applicable in this case by replacing ¥ with ?¥ and V¥ for the lower and upper
regions, respectively (i.e. for the cases of —0 and 40, respectively). Subsequently, Egs. (23a)-(23c) are
applicable as well. The condition for no contact between the laminae in the delaminated area yields the
following six equations:

0z(+0) = 0, (25a)
Tyz(+0) = 07 (25b)
Te(40) = 0, (25¢)
Oz(—0) = 0, (25d)
T =0, (25¢)
Tez(—0) = 0. (25f)

The solution of Eqgs. (25a)—(25f) results in discontinuous values and derivatives of the warping on the in-
terface line of a delaminated region. The determination of the warping derivatives for upper levels discussed
in previous sections is valid for the present case as well.

4. The finite-difference scheme

As already indicated, the present approach is independent of any numerical methodology, and an an-
alytic example for a relatively simple case will be described in what follows. Yet, for more complex con-
figuration, a numerical approach is inevitable. To demonstrate the methodology offered in this paper for
generic configurations, all of the above three solution levels have been implemented using a finite-difference
scheme. It should be emphasized that finite-difference solutions have a special advantage in the present
approach, since they enable a direct specification of the degrees of freedom and the governing equations
(i.e. physical phenomena) that need to be included at each level. This separation is not trivial in other
numerical methods such as the finite-element approach where a global formulation is inevitable.

4.1. General discretization aspects

In what follows, the discussion will be focused on the rectangular cross-section shown in Fig. 4a. For
that purpose each cross-section is divided into (N x M) cells (M cells in the y direction and N cells in the z
direction) which are not necessarily of equal size. A control point (y.(i, f),z.(i,)) is defined at the middle of
each cell. A warping value ¥"(i, j), ¥*(i,j), ¥"(i,j) is defined at each control point. In addition, boundary
control points are defined on all boundary edges and warping values Y™ (i), ¥Y**(i), ¥*°(j), ¥*Y(j)
(o = u,v,w) are assigned at these points. In addition, the beam is divided into N, longitudinal segments as
shown in Fig. 4b.

For the determination of displacement derivatives at a field point, a second-order polynomial approxi-
mation is used, which is equivalent to a ““central derivative” when equally spaced data is under discussion.
For example, to determine the 0¥, , /3y and 0°¥[, , /0y* derivatives at (y(;),z)), the points ¥[; ), ¥, ,
and ¥{, ), and the corresponding locations (ye(j-1), Ze() ) (yc(, Ze(y) and (Ve(j+1),Ze(s)) are used to evaluate
the polynom1a1 approximation that fits these points, ¥’ 2 ay* + by + ¢, while

(1 _1) 061<10)01§; 1)
T (1,1 - BRI o
4,(0.

2(0.21) (26b)

_ —1)—a4
b= 51k 1) ’
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Fig. 4. A finite-difference discretization of a beam of a rectangular cross-section: (a) the cross-sectional discretization (only the ¥*
warping component is shown) and (b) a spanwise discretization along the x axis.

where the following definitions are used:

Ay (k1) = Tf‘iﬁk) — ‘Pfiﬁ[), (27a)
2 2
Mk, 1) = (Ttiﬁk)) - (lpl;,.w)) : (27b)
0 (k7 l) = Ye(ij+k) — Ve(ij+1)s (270)
2 2
Ok, 1) = (vetrjrn)” — Oewsen) (27d)
Thus, the first and second derivatives at the (v, zc;)) point become
alp?i‘j) =2ay.;; +b (28a)
dy J ’
Ty
(i) _
ayzj =2a. (28b)

Identical technique is used for determining partial derivatives, and slightly modified procedure holds for
boundary points.

4.1.1. Level I solution

With the aid of Egs. (10a)—(10d) and (11) and the above described finite-difference scheme, it is possible
to express the equations of equilibrium in terms of the displacements, and to construct a linear system of
(M X N)+2(N + M) + 4 equations and unknowns for each cross-section which may be written as

[S{UY ={r}, (29)

where the unknown vector, {U}, is given by

{U} = <u7x » Usxxx y Woxax ¢7x ) '}/”(17 1)7 LR 'Pu(NvM)y II’;;(I); R WZ(Z(N +M))>Ta (30)
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where P consists of Y (i), Y**(i), ¥*"(j), ¥*Y(j). The local differential equation (Eq. (11)) supplies one
equation per each cell (total of M x N equations), the contour boundary condition (Eq. (14)) supplies one
equation per each boundary point (total of 2(M + N) equations), and the integral equilibrium equations
(Egs. (10a)—(10d)) supply additional four integral equations. Consequently, the loading vector { f} consists
of the external resultant loads and all other quantities that may not be expressed by the components of {U}.
Generally, this vector may be written as

(Y = {fi oo fu L F2 13 NP2 (31)
where

ﬁ F +f;(( 7XY b 7)(’( 9 qlu(ihj)?x )? (32a)

f2 :1:}'+.f;)(vaxwi,xxa lpu(ivj)m)v (32b)

f=E, (32¢)

ﬁ - M)C + mX(U7XX 9 W?XX b Wu(i?j)?x )7 (32d)

fi :fi(uvcx 9 vaxx ) 7XX 9 qjax ) T;Zx 9 anl:y I qﬂ;7 ¢aXX ?BX)' (326)

The terms of the matrix [S] and the vector {f} are also explicit functions of the cross-sectional geometry
and the elastic moduli distribution.

As shown above, the solution in level I includes longitudinal derivatives of both the cross-sectional
displacements and the out-of-plane warping. Subsequently, this solution is based on internal iterations. The
iterative scheme is initiated by some deformation assumption. Then, the resultant external loads at the
discrete cross-sections along the beam (see x; ...xy, in Fig. 4b) are evaluated. Subsequently, Eq. (29) is
solved and the unknown vector, {U}, is obtained for each cross-section. The natural boundary conditions
at the beam tip (Eqgs. (13a) and (13b)) are then used to obtain the values of v,,,, w,,, there. This is done by
expressing the strain components of Egs. (13a) and (13b) in terms of the displacements which yields two
equations where the only unknowns are v,,,, w,,,. These values are then integrated along the beam and the
distributions of v,,, (x) and w,,, (x) are obtained. With the aid of the geometric boundary conditions at the
root (Eq. (12)), the distributions of u, v,., w,., v, w and ¢ along the beam are also determined. Using this
new estimation of the deformation, the vector {f} at each cross-section is updated (since it is a function of
longitudinal derivatives of the unknowns, see Egs. (32a)—(32¢)), and the iterative process is repeated until
convergence is achieved. Numerical study has shown that the above quasi-linear scheme exhibits excellent
convergence characteristics.

It should be noted that the above internal iterations within level I emerge only from the specific nu-
merical formulation described above which has been adopted for the sake of clarity. Different versions are
possible including non-iterative solution procedures, and closed-form solutions for simple cases (Rand,
1994). In particular, the analysis in this level may be carried out by an FEM which accounts for the out-
of-plane warping.

4.1.2. Level II solution

For the solution in level II, the unknowns are ¥{, , ¥}, at each field point, ¥{;, ¥y, ¥, V[ on the
vertical edges, and V{7, ¥} ?’Z/U Py on the horlzontal edges — see Fig. 4a. The ﬁeld equatlons (Eqs (19a)
and (19b)) are applied at each cell pomt (Ve(j)s Ze(1))» and the boundary conditions (Eqs. (20a) and (20b)) are
applied over the edges (yz,zc)) (Vr,Zze(n) Vet 2p) (Ve(j)s Zu)-

Using the above described finite-difference scheme, the solution in this level may be put as a linear system
of algebraic equations where the unknowns are the above warping values in the field and on the boundaries.
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Thus, the system size is 2NM + 4(N + M). Note that the contributions of ] ,, and . that are evaluated by
the solution in level I are the “forcing” terms in this system (Egs. (19a) and (19b)). The solution in this level
is a “one step”’ solution that includes no iterations.

As already discussed, the analysis in this level may be carried out by various other methodologies in-
cluding the FEM which may be easily adapted to the cross-sectional domain.

4.1.3. Level I solution

Bonded laminae: A discrete description of the interface region is described in Fig. 5. Values related to the
regions below and above the interface line are denoted by the left superscript “D” and “U”, respectively.
From level I and level II solutions, the values of ?¥y), ?¥ ), Y¥(1) and V¥, are known since these are
control location of the finite-difference mesh. Subsequently, the unknown values of the warping at the
interface point ¥, %' and ¥" are defined for each vertical line.

As a first step, for a given set of ¥, W' and V", the warping derivatives in the z direction just below the
interface point (the point denoted —0 in Fig. 5) are determined based on ¥, ? ¥ and D ¥ (3. Similarly, the
warping derivatives just above the interface point (the point denoted +0 in Fig. 5) are determined based
on ¥, ¥, and U¥,. For that purpose, ¥ is expanded in the “D” region as: ¥ (P() = ¥ + PpP{ + PP
where:

wW\D 2 wW\D 2
(Dl‘y(2> - W)DC(I) - (qu(l) - lP)DC(z)
2 2
DC(Z)DC(]) - DC<1)DC(2)
D DT(I) - ? Db

DC?l) DZ(I)

Db:

) (33a)

Similarly, ¥ is expanded in the “U” region as: ¥(°{) = ¥ + PbP{ 4 PcP{* and the expressions for Vb and Yc
are similar to those of Egs. (33a) and (33b) (i.e. obtained by replacing the left superscript “D” by “U”).
Thus, the first derivatives at both sides of the interface point are

'P,z(,o) = —Db7 (348.)
¥..r0)=Yb. (34b)
A
b 4
Interface
Line
~
U
U Hy
Ho)
|
|
|
z 0 1Y
|

-

i

Fig. 5. Discretization of an interlaminar area in the case of bonded laminae (applies to each one of the warping components).
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It is now possible to express the strain and the stress components described in Egs. (22a)—(22c) and (23a)-
(23¢) and to apply system of three equations and unknowns of Eqs (24a)—(24c¢) for each vertical line. The
solution of this system yields the desired values of ¥, ¥ and ¥".

As shown in Fig. 2, level I1I solution results are fed ‘upwards” by means of the warping derivatives in
the z direction on both sides of the interface line. Within the current finite-difference scheme, the following
derivatives at the first control point are transferred to level II solution:

Voor,) = =" — 22, (35a)
Vo= "b+2%), (35b)
Vo, = 20, (35¢)
Vo) = 2Yc. (35d)

In addition, the partial derivatives ¥,,. at these points are evaluated by a finite-difference derivative of ¥,.
across adjacent vertical lines.

While the derivatives V.7, W.,o, W0, W2, ¥,/ , ¥, are fed upwards to solution level II, the derivatives
P W are fed upwards to solution level I. These values are used to construct ! and T at the Py, Yy
locations.

A delaminated interface: Similar to the previous case, the values of “¥ ), P¥(), V¥ (1) and V¥, are
known from the level I and level II solutions. However, at the interface point, the values of the warping at
the lower edge of the upper lamina is not equal to the warping at the upper edge of the lower lamina. Thus,
six unknowns appear in each vertical line: ?P", 2@ PP" Up" UP’ and VP". Subsequently, six equations
have to be solved for each vertical line.

Egs. (33a) and (33b) are still applicable in this case by replacing ¥ with ¥ and V¥ for the upper and
lower regions, respectively. Subsequently, Eqgs. (34a) and (34b) are applicable as well. The condition of no
contact between the laminae in the delaminated area turns to give the six equations given in Eqs. (25a)-
(25f). The above Egs. (35a)—(35d) hold for the present case as well and the derivatives values are fed to
solution levels I and II as described in the previous section.

5. Consistency, stability and convergence

As already indicated, the proposed multilevel approach employs an iterative scheme where the solution
levels are executed sequentially until convergence is achieved. When such a convergence is obtained for the
linear problem under discussion, all equations of equilibrium and boundary conditions are satisfied si-
multaneously, and therefore the overall solution coincides with the three-dimensional solution. Therefore,
when consistency, stability and convergence issues are raised, one should distinguish between two different
classes of considerations. The first class should examine the corresponding characteristics of each solution
level, while the second class should examine the consistency, stability and convergence of the system of
levels that are proposed in this paper. Since each solution level may be executed using various solution
methodologies, the characteristics of these solutions will not be discussed in the present context and it will
be assumed that each one of these solution scheme is consistent and stable by its own. However, within the
analytic example presented in what follows, an explicit evaluation of the iteration matrix of the overall
multilevel process, [«], and its spectral radius, p,, will be presented and discussed. Note again that this
iteration matrix represents the stability and convergence of the overall iterations between solution levels
and its explicit evaluation is possible only because of the analytic nature of the example. For generic cases,
the iteration matrix has been obtained numerically.
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6. Applications

The illustrative results presented in this section have been carried out for a typical Graphite/Epoxy
laminae where E7; = 130 x 10° N/m?, E», = E33 = 10 x 10° N/m?, G5 = Gy3 = 6 x 10° N/m?, Go3 = 3 x 10°
N/mz, Vip = Vi3 = 0.3 and Vo3 = 0.5.

6.1. Analytic example: the case of pure bending of homogeneous cross-sections

When dealing with the case where all laminae are identical and oriented at the same direction with
respect to the x axis, a homogeneous cross-section is obtained (which may also be viewed as a “‘single
lamina cross-section’). Therefore, this case reflects a ““‘symmetric” layup that produces coupling between
bending and twist. By activating solutions levels I and II only for this case (since there are no interface lines
between different laminae), the above described formulations enables a closed-form analytic solution for the
case where the beam undergoes a uniform bending moment, M,. Such a solution provides a clear insight
into the influence of the in-plane warping, demonstrates the multilevel analysis suggested in this paper
including its convergence to the three-dimensional solution, and enables an explicit evaluation of the it-
eration matrix and its spectral radius. This analytic example also demonstrates the fact that the proposed
methodology is independent of any numerical aspect of the problem.

Thus, the present analytic example deals with the case where the beam is assumed to undergo a uniform
bending moment, M,, which is applied at the tips by a linear axial stress distribution, namely ¢,, = zM, /L.
where . = [ [z’d4. In what follows, a three-dimensional exact solution of this problem will be first
presented. Then, analytic solutions for both level I and level 11 are separately described, and subsequently,
the proposed multilevel iterative methodology is demonstrated.

6.1.1. The three-dimensional exact solution

An exact solution for the above bending of unbalanced homogeneous orthotropic beam is presented in
this section. The solution is quite general and applicable for any homogeneous simply connected cross-
section. The derivation is based on some preliminary assumptions regarding parts of the displacement
components. However, since these assumptions will be proved to produce an exact three-dimensional so-
lution to the present problem, the uniqueness of such exact solution establishes the validity of all prelimi-
nary assumptions adopted throughout the derivation.

In general, the displacements, #, © and w in the x, y and z directions, respectively, are given in Egs. (1a)-
(1c). To derive a closed form solution for the above described case, a solution of the following form is
applied:

u(x) =0, (36a)
v(x) = 0, (36b)
P' = Ayz, (36¢)
V' = Bz, (36d)
Y = Cy* + D2, (36e)

where A, B, C and D are constants to be determined. In addition, w,,, and ¢,, are assumed to be constants
along the beam. Using Egs. (1a)-(1c) and (36a)-(36¢), the strain components take the form:
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Exx = TZWixx (373)
&y = Bz, (37b)
&, = 2Dz, (37¢)
7). = 2Cy + By, (37d)
Yz = ¢7xy +Ay7 (376)
Yoy = —Puz + Az (37f)

The above expressions are substituting in the strain vector of Eq. (5), and the stress vector of Eq. (4) is
determined with the aid of Egs. (2) and (3). Thus, by setting 4 = —¢,, and C = —B/2 in Egs. (37d)—-(37f),
one obtains y,, =y, = 0 and y,, = —2z¢,,, which with the aid of Egs. (2)~(5) shows that 7,. = 7., = 0. At
this stage, it is possible to formulate the requirements for ¢,, = .. = 7, =0 and M, = f f 0,,.zd4 as the
following system of algebraic equations:

—Cyp —2Cis Cip 2Cp3 Wi M, /L.
—Cpn —2C6 Cn 20y b | _ 0 (38)

The solution of Eq. (38) ensures that all stress components vanish, except for g,.. Consequently, it is evident
that all differential equations of equilibrium and boundary conditions are satisfied for any arbitrary cross-
sectional geometry. Subsequently, w(x) and ¢(x) may be integrated (for example, the case of w(0) =
wye (0) = ¢(0) = 0 yields w = w,, x*/2 and ¢ = ¢ x).

6.1.2. Solution by a multilevel approach

In what follows the present problem will be expressed in terms of solution levels and the multilevel
approach will be demonstrated.

Level I: The solution in this level is based on the assumption (which will be proved to be exact later on)
that the data from level II solution will be of the form ¢!} = a;z, ‘cg = ayz, and 7! = 0, where a; and a, are
constants, and clearly for the first iteration a; = a, = 0 will be used. In addition, u and v are set to zero, w,,,

and ¢,, are assumed to be constants, and an out-of-plane warping of the following type is used:
Y= —¢, )z (39)
Substituting the above initial assumptions in Eqs. (6a)—(6¢c) and (7) shows that

O = Cii( = 2wy ) + Cr6( = 2200 ) + a1z, (40a)
1. =0, (40b)
Txy = C16( — ZW,xx) + C66( — qub,x) + a»z. (400)

It is now possible to determine w,,, and ¢, from Egs. (40a), (40b) by the requirements t,, =0 and
0y = zM, /I, which yield:

2C6 Cis | [ &\ _ a
[2C16 Cll:|<waxx> B (al—j}fj’) (“41)
The reader may verify that the above values for w,,,, ¢,, and the expression for ¥* satisfy all equations of
equilibrium (Egs. (10a)—(10d) and (11)) and boundary conditions (Egs. (12), (13a), (13b) and (14)) of level 1.

This concludes the solution in this level, while for the solution in level II, the following stress components
are transferred (Egs. (15) and (16)):
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T 2Cs¢  Cis ¢
o v = —Z 2C26 C12 ( . ) (42)
g 2C3  Ci3 b

zz

»—4%'—'

=3

while 7! = 1! =0.
Xz yz
Level I1: The solution in this level is based on the assumption that the in-plane warping components are
of the form ¥' = Byz and V" = C)* + Dz*> where B, C and D are constants. According to Eq. (18),

0y = szBZ + 2C23DZ + O'JI/y7 (433.)
0.. = C3Bz +2Cy;3Dz + o', (43b)
7, = Cas(B + 2C)y. (43c¢)

The requirement for ¢,, = 0.. = 7,. = 0 shows that B + 2C = 0 while B and D are obtained from:
Cn Cu|( B\ _|2Cs Coff ¢ (44)
Gy C3 |\ 2D 2C Ci3 [\ Wi )
The solution of the above system of equations ensures that both the differential equations, Egs. (19a) and
(19b), and the boundary conditions, Egs. (20a) and (20b), are satisfied. This concludes the solution in level

IT while Eq. (21) is used to construct the stress components ¢!} = g,z and r}; = a,z which are feeded back to
level 1, as

a\ _ | Cn Cis B
(2)-[e &) *
while as previously assumed t!! = 0. With these values the iterative process returns to level I, and the above
steps are repeated until convergence is achieved.

6.1.3. The iterative multilevel process

Fig. 6a presents the nondimensional values of —M, /(Cy1L.W,) and —¢,, /w,,, as functions of the iter-
ation number, while Fig. 6b presents the variation of the nondimensional values of @ and a, as obtained by
a sequential execution of the above solution levels for the material properties presented above and for a
layup angle of 30°. As shown, convergence is achieved after six iterations and the reader may verify that the
three-dimensional exact solution is reached. It is also evident that both the values of w,, and ¢,, are
modified by the in-plane warping, and that the values of iteration #1 correspond to the case where the in-
plane warping is ignored.

6.1.4. Spectral radius

The above multilevel solution consists of two deformation parameters, ¢,. and w,,, that are transferred
from level I to level 11, and two deformation parameters, a; and a, that are fed back from level II to level 1.
Subsequently, an iteration matrix may be formulated for each one of these two sets of deformation pa-
rameters and a derivation of its spectral number may be carried out. To derive the iteration matrix for the
a, and a, parameters, Eq. (41) is substituted into Eq. (44) and then Eq. (44) is substituted into Eq. (45). This
enables to write

(&), =0(e) +m (46)

where the subscript i represents the iteration number. The iteration matrix, [«], is given by
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Fig. 6. (a) The values of w,,, and ¢,,. (b) The values of a; and a, for homogeneous beam under pure bending moment, },, as obtained
by the analytic solutions for levels I and II.

o] = Cn Ci||Cn Cx - 2C Cip|[2Cs Cn - (47a)
Cy Ci||Cn Cis 2C Ci3||2Cs Cis|
_My/]zz
Bl=Ll 57 ) (47b)

Introducing the elastic moduli of the present example shows that the spectral radius of this example (de-
fined as max; |4;| where A; are the eigenvalues of [a]) is p, = 0.151 (while the condition p,<1 ensures
stability and convergence of the scheme). As already stated, no general proof for generic configurations
may be developed in the present context, since the proposed multilevel analysis is not confined to a specific
solution methodology at each level (which may be based on high number of degrees of freedom). However,
the above closed form solution and the determination of the spectral radius of the overall multilevel it-
eration process demonstrates the feasibility and applicability of the method to the present application of
laminated composite beams.

To complete the present study of homogeneous cross-sections, Fig. 7a and b present the behavior of a
clamped-free beam of homogeneous rectangular cross-section that undergoes a tip beamwise load. In the
absence of a closed-form solution for this case, the solution has been obtained using the finite-difference
scheme presented in this paper. Fig. 7a presents the “direct”” deformation (i.e. beamwise displacement due
to a beamwise load), while Fig. 7b presents the “induced” deformation (i.e. twist due to a beamwise load).
As shown, the solution in level I by itself is not capable of adequately predicting the beamwise deflection for
lamination angles above 20°, and the induced twist for angles above 40°. Similar trend has been observed in
other loading modes.

6.2. Non-homogeneous cross-sections
6.2.1. An uncoupled beam

The discussion will now turn to the case of non-homogeneous cross-sections. As a first case, a symmetric
and balanced (i.e. uncoupled) rectangular cross-section with a layup of [0/90/0] is discussed, while the
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Fig. 7. (a) Tip beamwise displacement. (b) Tip twist angle due to a tip beamwise load: ¢,c = (F!/*)/(3C11(0))L..

clamped-free beam is assumed to undergo a beamwise tip force, F'. Clearly, to obtain a complete solution
in these case, all three solution levels are required. The rectangular cross-section dimensionsa : b =2 : 1 are
shown in Fig. 8, where an illustrative cross-sectional discretization is shown. The numerical results pre-
sented in what follows are for N = 21 and M = 15.

For the present configuration and loading mode, zero values for the cross-sectional displacements u(x),
v(x), and ¢(x) were obtained, while a tip beamwise displacement of w'/wyr = 1.09 (Where wyr =
(F'1)/(3C11(0)1..)) has been reached.

The following discussion will describe the above composite beam behavior in more details by comparing
the results with the case where only solution levels I and II are used. The three warping components are
presented in Fig. 9a—c. The out-of-plane warping ¥* shown in Fig. 9a exhibits linear variation over the 90°

a

Fig. 8. Undeformed discretized rectangular cross-section applied for three laminae. The finite-difference solution is based on a meshing
scheme which is refined towards the lamina free surfaces or interlaminar lines (using a “cosine rule”). Layup notation is [0}, 6,, 65].
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Fig. 9. (a) The distribution of the out-of-plane warping, ¥*. (b) The distribution of the in-plane warping, ¥*. (c) The distribution of the
in-plane warping, ¥", due to a beamwise tip load over a rectangular cross-section. ¥yr = aCes(0)/F!, x/L = 0.5, y/a = —0.3. The (*)
symbols indicate the finite-difference control points.

lamina and different higher order variation over the 0° laminae. It is also demonstrated that in order to
maintain a continuous stress distribution, the warping on both sides of the interface lines exhibits different
derivatives (with respect to z). As far as the in-plane warping components are concerned, Fig. 9b and ¢
shows that solutions of level I and II only, lead to relatively large discrepancies compared with the complete
solution (i.e. I + IT + III). Note that no in-plane warping is included in solution level I. These discrepancies
are clearer in Fig. 10 where the deformed cross-section is shown. Of special interest is the variation in the
deformation along the vertical edges.

The normal and shear stresses are presented in Figs. 11a—c and 12a—c, respectively, while the broken lines
represent values that were obtained by solutions levels I and II only. The axial stress o, is presented in
Fig. 11a. As shown, this stress exhibits a discontinuous distribution and the bending moment is mainly
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Fig. 10. The deformed cross-section of a clamped-free beam of a rectangular cross-section at x/L = 0.5 due to a beamwise tip load
(E.L?/(3C)1(0)I..) = 0.0239). Note that the solution in level I contains no in-plane warping. The warping magnitude has been mul-

tiplied by 1000.
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Fig. 11. (a) The distribution of the axial stress, o,,. (b) The distribution of the normal stress, g,,. (c) The distribution of the normal
stress, .., due to a beamwise tip load over a rectangular cross-section. o,r = C11(0), x/L = 0.5, y/a = —0.3. The (*) symbols indicate
the finite-difference control points.
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Fig. 12. (a) The distribution of the shear stress, ... (b) The distribution of the shear stress, 7,.. (c) The distribution of the shear stress,
7., due to a beamwise tip load over a rectangular cross-section. g, = Cg6(0), x/L = 0.5, y/a = —0.3. The (*) symbols indicate the
finite-difference control points.

supported by the outer laminae. The normal stress ¢,, is shown in Fig. 11b from which the compression in
the upper lamina and the extension in the lower lamina are clear. The middle lamina is subjected to an
alternating o,, sign. This distribution correlates well with the deformation along the vertical edges shown in
Fig. 10. The normal stress o.. is shown in Fig. 11c which demonstrates that the analysis provided by so-
lution level III is essential for predicting this interlaminar normal stresses. As shown, without the inter-
laminar analysis provided by level III solution, an error of more than 200% is obtained in the prediction of
the interlaminar normal stresses, in addition to a discontinuous distribution.

The shear stress t,, is presented in Fig. 12a. As shown, this stress is highly influenced by level 111 solution.
In this case, level III solution establishes continuous distribution for this stress and provides an adequate
value to the interlaminar values. Similar conclusion is reached for the 7,, component presented in Fig. 12b.
The t,, shown in Fig. 12c is relatively small and plays no role in the present case.
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6.2.2. A beam with a “bending-twist” coupling

The discussion will now be focused on the case of and unbalanced beam of a rectangular cross-section
with a layup of [30/0/30]. The clamped-free beam undergoes a beamwise tip moment, M,. The rectangular
cross-section dimensions and discretization are identical to those reported for the previous example.

The above unbalanced symmetric layup induce a beamwise bending-torsion coupling. Subsequently a tip
beamwise deflection of w'/wyr = 1.71 and a tip twist of a ¢/ = 2.09 (where ¢ = (F'1?)/(3C11(0)L..))
have been obtained.

The distribution of the interlaminar shear stresses 1, is presented in Fig. 13. As shown, a dramatic
increase of this stress occurs along the vertical edges and in the vicinity of the interlaminar lines. This
observation matches the findings observed in Wang and Choi (1982) where analysis which is focused on the
boundary-layer effects is reported. Note that the net F, resultant force vanishes in this case.

The distribution of the t,, shear stresses is presented in Fig. 14. Since this distribution is not continuous
across the interlaminar lines, separate distributions for the three laminae are presented. Again, sharp in-
crease of this stress is observed in the vicinity of the interlaminar lines.

7. Concluding remarks

A solution methodology based on a multilevel analysis of laminated composite beam has been devised.
The analysis employs a simple iterative procedure which carries out a series of solutions, while each solution
is responsible for introducing a different level of physical phenomena. The solution hierarchy has been
designed in such a way that each level is focused on a different set of unknowns. This hierarchy ensures that
the results of lower levels are considered as a nearly constant background state for the higher level analyses,
while the results of higher levels may be considered as having a secondary or small effect on the lower level
results. The paper summarizes the proposed solution strategy and its implementation for generic cases using
a finite-difference based scheme.

Overall, the solution provides a three-dimensional solution for composite beam behavior due to a ge-
neric load distribution that may handle all levels of deformation which are usually differ by orders of

Fig. 13. The distribution of the shear stress, 7,., due to a beamwise tip load over a rectangular cross-section (T,s = 7,.(max), x/L = 0.5).



4042 O. Rand | International Journal of Solids and Structures 38 (2001) 40174043

Fig. 14. The distribution of the shear stress, t
x/L =0.5).

due to a beamwise tip load over a rectangular cross-section (Trf = Ty, (max),

Xys

magnitude. Starting from the global beam deformation, the solution includes all warping components and
interlaminar effects, and supplies an insight into the main physical phenomena at each level.

It should be emphasized that the present methodology is independent and decoupled from any numerical
methodology. The closed form analytic solution for a simple configuration which is offered in this paper
testifies to this fact.

References

Belsky, M., Beall, M.W., Fish, J., Shephard, M.S., Gomaa, S., 1995. Computer-aided multiscale modelling tools for composite
materials and structures. Computing Systems in Engineering 6 (3), 213-223.

Berdichevsky, V., Armanios, E., Badir, A., 1992. Theory of anisotropic thin-walled closed-cross-section beams. Composites
Engineering 2 (5-7), 411-432.

Bull, J.W. (Ed.), 1995. Numerical analysis and modelling of composite materials, Analysis of composite rotor blades. Chapman & Hall,
London (Chapter 1).

Chandra, R., Stemple, A.D., Chopra, 1., 1990. Thin-walled composite beams under bending, torsional, and extensional loads. Journal
of Aircraft 27 (7), 619-625.

Chandrashekhara, K., Bangera, K.M., 1992. Free vibration of composite beams using a refined shear flexible beam element.
Computers and Structures 43 (4), 719-727.

Chen, W.-H., Huang, T.-F., 1997. Stress singularity of edge delamination in angle-ply and cross-ply laminates. Journal of Applied
Mechanics 64, 525-531.

Fish, J., Markolefas, S., 1994. Adaptive global-local refinement strategy based on the interior error estimates of the A-method.
International Journal for Numerical Methods in Engineering 37, 827-838.

Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G.C., Mussi, F., 1983. Anisotropic beam theory
and applications. Computers and Structures 16, 402-413.

Kapania, R.K., Raciti, S., 1989. Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling. AIAA
Journal 27 (7), 923-934.



O. Rand | International Journal of Solids and Structures 38 (2001) 4017-4043 4043

Maiti, D.K., Sinha, P.K., 1994. Bending and free vibration analysis of shear deformable laminated composite beams by finite element
methods. Journal of Composite Materials 29 (1), 421-431.

Mitchell, J.A., Reddy, J.N., 1998. A multilevel hierarchical preconditioner for thin elastic solids. International Journal for Numerical
Methods in Engineering 43, 1383-1400.

Noor, A.K., Burton, W.S., 1989. Assessment of shear deformation theories for multilayered composite plates. Appl. Mech. Rev. 42 (1),
1-12.

Nosier, A., Reddy, J.N., 1992. On vibration and buckling of symmetric laminated plates according to shear deformation theories. Acta
Mechanica 94, 123-169.

Ochoa, 0.0., Reddy, J.N., 1992. Finite Element Analysis of Composite Laminates. Kluwer, The Netherlands.

Rand, O., 1994. Nonlinear analysis of orthotropic beams of solid cross-sections. Journal of Composite Structures 29 (1), 27-45.

Rand, O., Barkai, S.M., 1996. Analytic insight into the structural couplings and nonlinear formulation of solid and thin-walled
composite blades. 52nd Annual Forum of the American Helicopter Society 2, 927-941.

Reddy, J.N., 1989. On refined computational models of composite laminates. International Journal for Numerical Methods in
Engineering 27, 361-382.

Reddy, J.N., 1990. A review of refined theories of laminated composite plates. Shock Vibrations Digest 22, 3-17.

Robbins, D.H., Reddy, J.N., 1993. Modelling of thick composites using a layerwise laminate theory. International Journal for
Numerical Methods in Engineering 36, 655-677.

Savoia, M., Laudiero, F., Tralli, A., 1993a. A refined theory for laminated beams: part I. New high order approach. Meccanica 28
(October), 39-51.

Savoia, M., Laudiero, F., Tralli, A., 1993b. A refined theory for laminated beams: part II. An iterative variational approach.
Meccanica 28 (October), 217-255.

Smith, E.C., Chopra, 1., 1993. Air and ground resonance of helicopters with elastically tailored composite rotor. Journal of the
American Helicopter Society 38 (4), 50-61.

Stemple, A.D., Lee, S.W., 1989 (April). Large Deflection Static and Dynamic Finite Element Analysis of Composite Beams with
Arbitrary Cross-Sectional Warping. 30th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference.
AIAA Paper 89-1363-CP, pp. 1789-1798.

Tracy, A.L., Chopra, 1., 1995. Aeroelastic analysis of a composite bearingless rotor in forward flight using an improved warping
model. Journal of the American Helicopter Society 40 (3), 80-91.

Wang, S.S., Choi, 1., 1982. Boundary-layer effect in composite laminates: part 1. Free-edge stress singularities. Journal of Applied
Mechanics 49 (September), 541-548.

Yamane, T., Friedmann, P.P., 1993. Aeroelastic tailoring analysis for preliminary design of advanced propellers with composite blades.
Journal of Aircraft 30 (1), 119-126.



